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Abstract—The freezing of a solid phase from a fluid flowing past a cold surface is analyzed. The time

dependent, local solid layer thickness and the time dependent temperature distribution in the solid phase

are determined as functions of the pertinent physical properties, the surface temperature and the surface

convective heat flux. The latter may be a function of the streamwise coordinate. An exact, numerical,

solution is obtained and is compared to the approximate solution of Lapadula and Mueller and two

limiting solutions for very small and very large times. Numerical examples are given to illustrate the
method of calculation.

NOMENCLATURE
C, specific heat of the solid phase;
H, dimensionless thickness parameter for
solid phase;
k, thermal conductivity of the solid phase ;
L, local steady-state thickness of the solid

phase;

4., convective heat flux from fluid to solid
phase;

s(t), local thickness of the solid;

t, time;

T, temperature;

T;, fusion temperature of the solid phase;

T, temperature of the cold surface;

X, dimensional coordinate tangent to the
cold surface;

¥, dimensional coordinate normal to the
cold surface.

Greek symbols
a, thermal diffusivity of the solid phase;
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7, dimensionless
2kAT [pAa;

A, heat of fusion;

n, dimensionless space variable;

0, dimensionless temperature;

p,  mass density of the solid phase;

T, dimensionless time ;

t*,  dimensionless time at which limiting
solution for large time is started;

AT, temperature difference, T, — T,

physical parameter,

INTRODUCTION

THE FREEZING of a liquid probably first received
analytical treatment in Stefan’s [ 1] now-classical
work on formation of polar ice. Since, pheno-
mena of freezing and melting of liquids and
solids, as well as their analogues in the vapor and
solid phases, have come to be recognized as
comprising a class of “Stefan-like” problems.
In recent years, this class of problems has
attracted attention in diverse quarters. Those
works reviewed by the authors could be grouped
in three broad categories. First, the exact closed-
form solutions of Stefan, Neumann [2] and
Rosenthal [3], which are available when certain
restrictions are imposed. The second classifica-
tion includes approximate solutions to problems
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of freezing and melting. Two basically different
methods, associated with the works of Goodman
[4, 5] and Biot [6, 7], are employed. Libby and
Chen [8] applied Goodman’s integral method
to the growth of a solid layer deposited from a
flowing gas, and Lapadula and Mueller [9]
employed Biot’s method in dealing with the
same problem. The third category contains
those works offering finite-difference solutions,
among which those by Douglas [10] and
Landau [11] are prominent.

Additionally, the electrical-network analogy
of Kreith and Romie [12], and the series solution
of Evans, Isaacson and MacDonald [13] should
be mentioned. A brief but comprehensive survey
of numerical and analytical methods was pub-
lished in 1959 by Murray and Landis [14], who
also introduced two new numerical procedures.

Here, a finite-difference technique will be
employed to yield the thickness of the solid
phase deposited by a flowing liquid on a cold
surface, as a function of time and location on the
surface.

ANALYSIS

The problem to be considered is that of
freezing of a fluid in steady plane flow over a
cold surface.

The basic assumptions employed are:

a. Thickness of the deposited layer, s, is suffici-
ently small that conduction of heat in the
layer may be considered spatially one-
dimensional.

b. The convective heat flux, g, transferred from
the fluid to the cold surface is known as a
function of the streamwise coordinate, x, and
is time-independent.

c. The physical properties of both fluid and solid
phases are constant.

d. The temperature of the cold surface, T, is
uniform and constant.

e. It is assumed that there exists a definite inter-
face between the fluid and solid phases.

Figure 1 shows the physical system and some
of the notation employed.
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Fi1G. 1. The physical system.

The equations governing the flow of heat in
and growth of the solid phase are:

2
q. + plg; = k%:—(s, t). (2)
Boundary and initial conditions are:
y =0, T=T,
y==: T=T,; 3
t =0, s =0

Equation (1) is the familiar one-dimensional
heat-conduction equation. Equation (2) ex-
presses a balance between the flux of heat to the
solid from the fluid and the flux of heat con-
ducted away from the interface in the solid.

The problem is transformed, for convenience,
into a non-dimensional space. The transforming
equations are:

)

—2 (5)

(6)

In equation (6) the characteristic length, L. used
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to non-dimensionalize time is the local steady-

state thickness approached by the solid layer as

t— o0:

ML - T)
PR

It is through this parameter that the specified

heat flux, g,, enters the non-dimensional analysis.
Upon application of transformations (4-6).

equations (1-3) become the following:

L 7

80 9% ndH 0
dH  2kAT | 06
="} = — H
&= o [ 3y (1) — (D ] ©)
80,7) =0
l,7)=1 (10)
H(0) =0

where H is a non-dimensional solid thickness:

INEUAY
(0

LIMITING SOLUTIONS
Two observations pertinent in the neighbor-
hood of t = 0 may be made:

(11)

a. Because H(0) = 0, (H)! is near zero for very
small values of 1, while dH/dt and 86/dn (1, 1)
are not small.

b. 0 assumes constant values on the boundaries,
and this suggests that § may depend only on
n,near T = 0.

Assuming, then, that
0 = F(n) (12)

and simplifying equation (9) with (H)* ~ 0, the
following limiting solutions may be obtained,
for T near zero:

{ exp (=bz?) dz

0(n) = 1 (13)
{exp (—bz?) dz
)
H(z) = 4br. (14)
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The constant b is determined by the relationship

kAT
(\/b) exp (b) erf (\/b) = NG (15)

In order to obtain a limiting solution valid
for large values of 7, it may be pointed out here
that results of numerical integration (sum-
marized below) show that 6(n, 7) approaches its
steady-state distribution much more rapidly
than does H(t). Therefore, it may be assumed
that for t greater than some large value, say 7*.
the temperature gradient at y = 1 is

@(1,‘[) =1 (16)
on
Further, let H(z) be represented by
H(t) = H(0) —H(t)=1-H. (17

These substitutions make possible the limiting
solution:

T=1*+ ”—'1"1[(11*)* ~(1 - By

kAT
1 -(1 - Hy
T @ ] (18)

valid for large 1. The notation, H* = H(t*) is
used.

—In

NUMERICAL SOLUTION

Exact, closed-form solutions of equations
(8-10) have been obtained only with the aid of
rather restrictive assumptions concerning the
convective heating of the solid layer by the fluid.
These restrictions on g, are reflected in the
limitations to large or small values of t [see
equations (6) and (7)].

In this work, a modified Crank-—Nicholson
finite-difference representation was substituted
for equation (8), and a modified fourth-order
Runge-Kutta procedure was used to integrate
equation (9) for the general case of a known
non-zero, time-independent convective heating
rate.

Equations (8) and (9) are mutually coupled
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and equation (9) is non-linear. Therefore, an
iterative procedure was included in the integra-
tion which gives H and the distribution of 0 at
the jth time level. using successive determina-
tions of the -distribution at the (j + 1)th time-
level to refine the calculated value of H at that
time level. The iteration was continued at each
time-level until the dimensionless temperature
gradient, 80/0n, evaluated at the solid—fluid
interface, # = 1, varied by less than 10™* from
one iteration to the next. The value of H at the
(j + 1)th time level was then calculated using
this ““latest™ value of the temperature gradient.
The finite-difference equations used, along
with additional discussion of the numerical
procedures, are given by Beaubouef [15].
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Results of the numerical integration, for
values of 2k AT/pAx = 0-10, 1-0 and 100 are
given in Figs. 2. 3 and 4. respectively.

RESULTS

The numerical solutions for y = 01, 1-0 and
10-0 are shown in Figs 2. 3 and 4, respectively.
where they are compared to the limiting solutions
and to the approximate solutions of Lapadula
and Mueller (for # = 0; see [9]).

It may be observed that the numerical solu-
tions, in all cases. show the proper limiting
behavior. Further. Figs. 2-4 demonstrate gener-
ally good agreement between the approximate
solutions of [9] and the numerical solutions of
this work.
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F1G. 2. Comparison of the exact, approximate and limiting
solutions for y = 0-1.
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FiG. 3. Comparison of the exact, approximate and limiting
solutions for y = 1-0.
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Limiting solution

H (7}

<Nurnevical solution

y =10-0
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a— '
Limiting solution

& Approximate
solution [9]

FIG. 4. Comparison of the exact, approximate and limiting
solutions for y = 10-0.

These results demonstrate the marked influ-
ence of physical properties, boundary conditions
and convective heating rate (via the parameter
L in 7) on the freezing rate of a flowing fluid.
Table 1, showing the time when H = 0-99 for the
values of y employed, illustrates this point. As y
is increased through two orders of magnitude,
the time required for the freezing transient
decreases by two orders of magnitude.

Table 1

¥y tfor H = 099

01 86
1-0 10
100 2

It should be noted that

_2kAT _2CAT
T pla

A’ b

and appears as a ‘‘sensible heat/latent heat”
ratio. Materials with small latent heat, A, will be
characterized by large y; because less latent heat
must be extracted in order to freeze a unit mass,
such materials should freeze more rapidly. The
converse is true for materials with large latent
heat.

Additionally, materials with small specific
heat, C, in the solid phase are characterized by
small y. Such materials should demonstrate
transients in § which are negligible compared to
the transients in H, and conversely.

NUMERICAL EXAMPLES

Results of the numerical integration for the
case 7 = 0-10 will be employed in calculating
the thickness, s(t), of the ice layer deposited from
a flowing water stream in the two cases of: (a)
plane stagnation flow; and (b) flow over a flat
plate at zero angle of incidence. The physical
properties of water—ice, at atmospheric pressure,
will be taken to be

k = 128 Btu/(h-ft-°F)
C = 049 Btu/(Ib-°F)
A = 144 Btu/b

o = 0-046 (ft)*/h.

Case (a): Plane stagnation flow

The convective heat flux, g, in steady laminar
plane stagnation flow is independent of the
streamwise coordinate, x. Therefore, the thick-
ness of the deposited solid phase will be uniform
over the ““plate” at each instant. For an example,
the convective heat flux is chosen to be

q. = 500 Btu/(h-ft?).
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It follows, then, that:

AT = 14-8 degF (chosen so that y = 0:10)
L = 00379 ft
s(t) = 0:0379 (H)* ft
t =00313(0)h.
Table 2 shows corresponding values of s(t) and ¢
for this case. From this table, it may be seen that

the example system would “reach” steady-state
in just over 2:58 h.

Table 2. Growth of ice layer in
stagnation flow, case (a)

t s(t),
(b )
00 00
0:04989 00130
01745 00216
0-2990 00259
0-5500 0-0308
0-8600 0:0339
0-1700 0-0355
1-4900 0-0365
25800 00378

Case (b): Flow over a flat plate at zero incidence

It is assumed that the presence of the solid
phase deposited on the plate has negligible
effect on the fluid flow; this is consistent with
the assumption made earlier that the solid layer
is thin, The variation of g, with x will therefore
be taken to be that for the flat plate alone. As is
well known (see Schlichting [16], for example),
in such a flow

- 1
qc ~ Jx.
For these calculations, the convective heat flux
distribution is chosen to be
_ 500 Btu/(b-ft?)
qc - \/x .

The length of the plate will be taken to be 1 ft.
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Thus,

L = 00379 (x)* ft
s(x, ) = 00379 (H)* ft
t = 00313 (z) h.
The configuration of the solid—fluid interface
was calculated at two times during the transient,
(t = 0299 and ¢ = 1-49 h), and at the steady-

state, for x = 0,025, 0-50, 0-75, 1-0 ft. The results
are given in Table 3.

Table 3.
Growth of ice layer for flow past a flat plate, case (b)

x t s(x. 1)
) (h) i HD
00 0-299 9-56 0-470 00
0-25 0-299 9-56 0-470 0-130
0-50 0-299 9-56 0-470 00184
0-75 0-299 9-56 0470 00226
1-0 0-299 9-56 0470 0-0260
00 1-49 47-56 0928 00
0-25 1-49 4756 0-928 0-0182
0-50 1-49 47-56 0-928 0-0258
075 1-49 47-56 0928 00315
1-0 1-49 4756 0928 0-0364
00 steady state steady state 10 00
025  steady state steadystate 10 00189
0-50  steady state steadystate 10 00268
075  steady state steady state 1-0 0-0328
10 steady state steady state 10 0-0379
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Résumé—La congélation d’un fluide s’écoulant le long d’une surface froide est analysée. L’épaisseur

locale de la couche solide dépendant du temps et la distribution de température dépendant du temps

dans la phase solid sont déterminées en fonction des propriétés physiques convenables, de la température

de la surface et du flux de chaleur par convection 4 la surface. Ce dernier peut étre une fonction de la

coordonnée longitudinale. Une solution exacte et numérique est obtenue et comparée a la solution

approchée de Lapadula et Mueller et & deux solutions limites correspondant i des temps trés faibles ou
trés grands. On donne des exemples numériques pour illustrer la méthode de calcul.

Zusammenfassung—Das Ausfrieren einer festen Phase aus einer Fliissigkeit, die entlang einer kalten
Opberfliiche fliesst, wird analysiert. Die zeitabh#ingige, ortliche Dicke der festen Schicht und die zeit-
abhiingige Temperaturverteilung in der festen Phase wird als Funktion der entsprechenden Stoffwerte,
der Oberflichentemperatur und der konvektiven Wirmeabgabe an der Oberfliche bestimmt. Letztere
kann eine Funktion der Koordinate in Strdmungsrichtung sein. Eine exakte numerische Losung wurde
erhalten und dann mit der Niherungslosung von Lapadula und Mueller und zwei Grenzidsungen fiir
sehr kleine und sehr grosse Zeiten verglichen. Zur Erklirung der Rechenmethode werden numerische
Beispiele angegeben.

AHHOTAIMA—AHAINSUPYEeTCA BhHIMep3aHue TBepao#t (asnl M3 KUIKOCTM, OMHBaolel
XOJIOGHYI0 TOBEPXHOCTH. 3aBUCALIME OT BPEMEHU JOKAJLHAA TOJNIMHA TBEPAOTO CNOA H
pachpefiesiense TEMIIEPATYPH B TBepAOH dase onpenensaiorca Kak PyHKIMHU COOTBETCTBYIOLIMX
($u3UYeCKUX CBOWCTB, TeMIEPATYypPH MOBEPXHOCTH M KOHBEKTHBHOIO TEIJIOBOrO IOTOKA HA
nosepxHocTd, IlocieaHuit MOKHO BHPasuTh B BUAe QYHKIUM NPOROILHOK KOOPIAMHATH.
TMoxyueHrnoe TOYHOEe UNCIEHHOe peNIeHHe CPAaBHUBAJIOCH C NPUOIHAKEHHHM pelleHueM
Jlanagym u Miwodanepa, a Takme ¢ XBYMA NpefieNbHHMMU PeIIeHMAMH NJIA OYeHb MAJHX M
oueHb Gouplumx sHaveHnit Bpemenu. IIpMBOAATCA YMCHEHHBIE NPUMEPH IJA MILNIOCTPALHMH
METOfla pacuera.



