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Abstract---The freezing of a solid phase from a fluid flowing past a cold surface is analyzed. The time 
dependent, local solid layer thickness and the time dependent temperature distribution in the solid phase 
are determined as functions of the pertinent physical properties, the surface temperature and the surface 
convective heat flux. The latter may be a function of the streamwise coordinate. An exact, numerical, 
solution is obtained and is compared to the approximate solution of Lapadula and Mueller and two 
limiting solutions for very small and very large times. Numerical examples are given to illustrate the 

method of calculation. 

NOMENCLATURE 

specific heat of the solid phase ; 
dimensionless thickness parameter for 
solid phase ; 
thermal conductivity of the solid phase ; 
local steady-state thickness of the solid 
phase ; 
convective heat flux from fluid to solid 
phase ; 
local thickness of the solid ; 
time ; 
temperature ; 
fusion temperature of the solid phase ; 
temperature of the cold surface; 
dimensional coordinate tangent to the 
cold surface ; 
dimensional coordinate normal to the 
cold surface. 

Greek symbols 
a, thermal diffusivity of the solid phase; 
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dimensionless physical parameter, 
2kATlpLu ; 
heat of fusion ; 
dimensionless space variable ; 
dimensionless temperature ; 
mass density of the solid phase ; 
dimensionless time ; 
dimensionless time at which limiting 
solution for’ large time is started ; 
temperature difference, Tf - Tp 

INTRODUCTION 

THE FREEZING of a liquid probably first received 
analytical treatment in Stefan’s [l] now-classical 
work on formation of polar ice. Since, pheno- 
mena of freezing and melting of liquids and 
solids, as well as their analogues in the vapor and 
solid phases, have come to be recognized as 
comprising a class of “Stefan-like” problems. 

In recent years, this class of problems has 
attracted attention in diverse quarters. Those 
works reviewed by the authors could be grouped 
in three broad categories. First, the exact closed- 
form solutions of Stefan, Neumann [23 and 
Rosenthal [3], which are available when certain 
restrictions are imposed. The second classifica- 
tion includes approximate solutions to problems 
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of freezing and melting. Two basically different 
methods, associated with the works of Goodman 
[4, 51 and Biot [6, 71, are employed. Libby and 
Chen [S] applied Goodman’s integral method 
to the growth of a solid layer deposited from a 
flowing gas, and Lapadula and Mueller [9] 
employed Biot’s method in dealing with the 
same problem. The third category contains 
those works offering finite-difference solutions, 
among which those by Douglas [lo] and 
Landau [ 1 l] are prominent. 

Additionally, the electrical-network analogy 
of Kreith and Romie [ 121, and the series solution 
of Evans, Isaacson and MacDonald [ 131 should 
be mentioned. A brief but comprehensive survey 
of numerical and analytical methods was pub- 
lished in 1959 by Murray and Landis [14], who 
also introduced two new numerical procedures. 

Here, a finite-difference technique will be 
employed to yield the thickness of the solid 
phase deposited by a flowing liquid on a cold 
surface, as a function of time and location on the 
surface. 

ANALYSIS 

The problem to be considered is that of 
freezing of a fluid in steady plane flow over a 
cold surface. 

The basic assumptions employed are : 

a. Thickness of the deposited layer, s, is suffici- 
ently small that conduction of heat in the 
layer may be considered spatially one- 
dimensional. 

b. The convective heat flux, qe, transferred from 
the fluid to the cold surface is known as a 
function of the streamwise coordinate, x, and 
is time-independent. 

y = 0, T = Tp 

y = s, T = Tf (3) 

t = 0, s =o. 

Equation (1) is the familiar one-dimensional 
heat-conduction equation. Equation (2) ex- 
presses a balance between the flux of heat to the 
solid from the fluid and the flux of heat con- 
ducted away from the interface in the solid. 

The problem is transformed, for convenience, 
into a nondimensional space. The transforming 
equations are : 

c. The physical properties of both fluid and solid 
phases are constant. 

Y 

q=s(t) 
d. The temperature of the cold surface, Tp is e= T-T, 

uniform and constant. Tf - TQ 
e. It is assumed that there exists a definite inter- 

face between the fluid and solid phases. 

Figure 1 shows the physical system and some 
of the notation employed. 

at 
z = -. 

L2 

In equation (6) the characteristic length, L. used 

Plate 

X 

FIG. 1. The physical system. 

The equations governing the flow of heat in 
and growth of the solid phase are : 

aT a=T 
at=aay’ (1) 

qE + pl $ = kg (s, t). 
ay (2) 

Boundary and initial conditions are : 

(4) 

(5) 
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to non-dimensionalize time is the local steady- The constant b is determined by the relationship 
state thickness approached by the solid layer as 
t.--,cO: (db) exp (b) erf (db) = x, 

L = 0 - T,, 
PAa Jn 

(15) 

4c ’ 
(7) In order to obtain a limiting solution valid 

It is through this parameter that the specified 
for large values of r, it may be pointed out here 

heat flux, qn enters the non-dimensional analysis. 
that results of numerical integration (sum- 

Upon application of transformations (4-6). 
marized below) show that 0(~, z) approaches its 

equations (1-3) become the following : 
steady-state distribution much more rapidly 
than does H(r). Therefore, it may be assumed 

ae a28 qd~ae 
H(T)- = 7 + --- 

a7 all 2 dr atj (8) 
that for r greater than some large value, say r*, 
the temperature gradient at r~ = 1 is 

g = $$ $1, r) - (H)” 1 (9) f&r) = 1. (16) 

e(o,2) = 0 Further, let H(z) be represented by 

e(i,z) = i (10) H(z) = H(m) - R(z) = 1 - R. (17) 
H(0) = 0 These substitutions make possible the limiting 

where H is a non-dimensional solid thickness : solution : 

(11) !& 7 = 2% + Kit 

(H*)+ _ (1 _ H)t 

LIMITING SOLUTIONS 
_ln1 -(l-R)* (18) 

Two observations pertinent in the neighbor- 
1 - (H*)* 1 

hood of r = 0 may be made : valid for large r. The notation, H* = H(T*) is 

a. 

b. 

Because H(0) = O3 (H)* is near zero for very 
used. 

small values of r, while dH/dz and %/all (1, r) 
are not small. NUMERICAL SOLUTION 
8 assumes constant values on the boundaries. 

and this “ggests that ’ may depend Only On 
Exact, closed-form solutions of equations 

(8-10) have been obtained only with the aid of 
q, near z = 0. 

Assuming, then, that 

0 = J’(V) 

rather restrictive assumptions concerning the 
convective heating of the solid layer by the fluid. 

(12) 
These restrictions on qc are reflected in the 
limitations to large or small values of z [see 

with (H)* z 0, the equations (6) and (7)]. 

may be obtained, In this work, a modified Crank-Nicholson 
finite-difference representation was substituted 

and simplifying equation (9) 
following limiting solutions 
for z near zero: 

9 _ m. _ 
ettt) = d ev t - W dz 

i exp ( - bz2) dz 

H(T) = 4br. 

for equation (8) and a modified fourth-order 
Runge-Kutta procedure was used to integrate 

(13) equation (9) for the general case of a known 
non-zero, time-independent convective heating 
rate. 

(14) Equations (8) and (9) are mutually coupled 
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and equation (9) is non-linear. Therefore. an 
iterative procedure was included in the integra- 
tion which gives H and the distribution of f3 at 
the jth time level. using successive determina- 
tions of the B-distribution at the (j + 1)th time- 
level to refine the calculated value of H at that 
time level. The iteration was continued at each 
time-level until the dimensionless temperature 
gradient, X)/an. evaluated at the solid-fluid 
interface. q = 1. varied by less than 10m4 from 
one iteration to the next. The value of H at the 
(j + l)th time level was then calculated using 
this “latest” value of the temperature gradient. 

The finite-difference equations used, along 
with additional discussion of the numerical 
procedures. are given by Beaubouef [ 151. 

Results of the numerical integration, for 
values of 2kAT/pla = 0.10, 1.0 and 10.0 are 
given in Figs. 2. 3 and 4. respectively. 

RFS_JLTS 

The numerical solutions for y = 0.1, 1.0 and 
10.0 are shown in Figs 2, 3 and 4. respectively. 
where they are compared to the limiting solutions 
and to the approximate solutions of Lapadula 
and Mueller (for K = 0; see [9]). 

It may be observed that the numerical solu- 
tions, in all cases. show the proper limiting 
behavior. Further. Figs. 24 demonstrate gener- 
ally good agreement between the approximate 
solutions of [9] and the numerical solutions of 

this work. 

I.O- 
09- 

oe- 

A” 
n 

A-H- \Limiting 

.A’ 
,<Numericol solution 

solution 

AApproximate 

solution [9] 

y = 0.10 

FIG. 2. Comparison of the exact, approximate and limiting 
solutions for y = 0.1. 

IbOl- 

09- Limitingdution 
08 -Limiting solution ,AKNurnericol solution 

/ 

A Approximate 
solution [9] 

y= I.0 

FIG. 3. Comparison of the exact, approximate and limiting 
solutions for y = 1.0. 
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Limiting -/ solution 

A Approximotr 

solution [S] 

FIG. 4. Comparison of the exact, approximate and limiting 
solutions for Y = lOa. 

These results demonstrate the marked influ- 
ence of physical properties, boundary conditions 
and convective heating rate (via the parameter 
2, in z) on the freezing rate of a flowing fluid. 
Table 1. showing the time when H = 099 for the 
values of y employed, illustrates this point. As y 
is increased through t.wo orders of magnitude, 
the time required for the freezing transient 
decreases by two orders of magnitude. 

Table 1 

Y t for H = 093 

0.1 86 
1.0 10 

10.0 2 

It should be noted that 

2kAT 2CAT 
y=-=- 

PAa 1 ’ 

and appears as a “sensible heat/latent heat” 
ratio. Materials with small latent heat, J_, will be 
characterized by large y ; because less latent heat 
must be extracted in order to freeze a unit mass, 
such materials should freeze more rapidly. The 
converse is true for materials with large latent 
heat. 

Additionally, materials with small specific 
heat, C, in the solid phase are characterized by 
small y. Such materials should demonstrate 
transients in 6 which are negligible compared to 
the transients in H, and conversely. 

NUMERICAL EXAMPLES 

Results of the numerical integration for the 
case y = 0.10 will be employed in calculating 
the thickness, s(t), of the ice layer deposited from 
a flowing water stream in the two cases of: (a) 
plane stagnation flow; and (b) flow over a flat 
plate at zero angle of incidence. The physical 
properties of water-ice, at atmospheric pressure, 
will be taken to be 

k = 1.28 Btu/(h-ft-“F) 

C = 0.49 Btu/(lb-“F) 

1= 144 Btu/lb 

a = 0046(ft)2/h. 

Case (a) : Plane stagnationflo w 
The convective heat flux, q0 in steady laminar 
plane stagnation flow is independent of the 
streamwise coordinate, x. Therefore, the thick- 
ness of the deposited solid phase will be uniform 
over the “plate” at each instant. For an example, 
the convective heat flux is chosen to be 

9e = 500 Btu/(h-ft’). 
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It follows, then, that : Thus, 

AT = 14.8 degF (chosen so that y = 0.10) L = 0.0379 (x)* ft 

L = 0.0379 ft s(x, r) = 0.0379 (H)* ft 

s(r) = 0.0379 (H)+ ft t = 0.0313 (z) h. 

t = 0.0313 (z) h. The configuration of the solid-fluid interface 

Table 2 shows corresponding values of s(t) and t was calculated at two times during the transient, 

for this case. From this table, it may be seen that (t = 0.299 and t = 1.49 h), and at the steady- 

the example system would “reach” steady-state state, for x = 0,0*25,0*50,0*75,10 ft. The results 

in just over 2.58 h. are given in Table 3. 

Table 3. 

Table 2. Growth of ice layer in 
Growth of ice layer for Jo w past a flat plate, case (b) 

stagnation jJ0 w, case (a) 

(k 
s(L). 
(ft) 

0.0 0.0 
004989 0.0130 
0.1745 0.0216 

0.2990 0.0259 
0.5500 0.0308 0.8600 0.0339 

0.1700 0.0355 1.4900 0.0365 

2.5800 0.0378 

Case (b): Flow over a flat plate at zero incidence 
It is assumed that the presence of the solid 

phase deposited on the plate has negligible 
effect on the fluid flow; this is consistent with 
the assumption made earlier that the solid layer 
is thin. The variation of qC with x will therefore t, 
be taken to be that for the flat plate alone. As is 
well known (see Schlichting [16], for example), 
in such a flow 

2, 

r H(r) 
s(x. f) 

(G) tt (h) 

0.0 0.299 9.56 0.470 0.0 
0.25 0.299 9.56 0.470 0.130 
0.50 0.299 9.56 0.470 0.0184 
0.75 0,299 9.56 0.470 0.0226 
1.0 0.299 9.56 0.470 0.0260 

0.0 1.49 47.56 0.928 0.0 
0.25 1.49 47.56 0.928 0.0182 
0.50 I .49 47.56 0928 0.0258 
0.75 1.49 47.56 0.928 0.0315 
1.0 1.49 47.56 0.928 0.0364 

0.0 steady state steady state 1.0 0.0 
0.25 steady state steady state 1.0 0.0189 
0.50 steady state steady state 1.0 0.0268 
0.75 steady state steady state 1.0 0.0328 

“O steady state steady state 1.0 0.0379 
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4c = 
Jx . 6. 

The length of the plate will be taken to be 1 ft. 
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R&uII&-La congelation dun fluide s’6coulant le long dune surface froide est analy&e. L%paisseur 
locale de la couche solide dependant du temps et la distribution de temptrature d@endant du temps 
dans la phase solid sont determintes en fonction des prop&&s physiques convenables, de la temperature 
de la surface et du flux de chaleur par convection a la surface. Ce demier peut i?tre une fonction de la 
coordonn6e longitudinale. Une solution exacte et numerique est obtenue et comparte a la solution 
approchee de Lapadula et Mueller et a deux solutions limites correspondant a des temps t&s faibles ou 

t&s grands. On donne des exemples numtriques pour illustrer la methode de calcul. 

Z~aasuBg-Das Ausfrieren einer festen Phase aus einer Fltissigkeit, die entlang emer kalten 
ObertIllhe fliesst, wird analysiert. Die zeitabhllngige, Brtliche Dicke der festen Schicht und die zeit- 
abhiingige Temperaturverteilung in der festen Phase wird als Funktion der entsprechenden Stotfwerte, 
der Oberfliichentemperatur und der konvektiven Wilrmeabgabe an der Oberflbhe bestimmt. Letztere 
kann eine Funktion der Koordinate in Striimungsrichtung sein. Eine exakte numerische Liisung wurde 
erhalten turd dann mit der Niiherungslbsung von Lapadula mrd Mueller und zwei Grenzli%ungen fiir 
sehr kleine und se.hr grosse Zeiten verglichen. Zur Erklirung der Rechenmethode werden numerische 

Reispiele angegeben. 

AUUoTsUsIU-AKanUaUpyeTcU BbrMepBaKUe TBepaoU @aabI U3 H(IIAKOCTB, omnsammett 
XOJIO$&iylO nOBepXHOCTb. 3aBUCfimUe OT BpeMeHU JIOKanbHaR TOJlmUHa TBep&OrO C310R U 
pacnpenenemse TeMnepaTypbr B TBepgoU @aae 0npefienflroTcK KaK ~&HKUUU CooTseTcTByromUx 
(PU3UUBCKUX CBOUCTB, TeMnepaTypbI nOBepXHOCTU U KOHBeKTUBHOrO TenBOBOrO nOTOKa Ha 
nOBepXIiOCTU. HOCJIeUHUU MOWHO BbIpa3UTb B BUAe @yHKuUU npOROnbH0t-i KOOpAUHaTbI. 
IIonyBeUKoe TOYHOe KUcBeKUoe pemerrue cpamrusanocb c npu6nuHteKUnM pemeUUeM 
~anaJ.ryJIbI U Mroonnepa, a TaKHK? C AByMM UpegeBbHbIMU pemt?HURMU finK OYeHb MaBbIX U 
0Mexib bonbmux aKaueKu2t Bpereau. IIPUB~BRTCR 9UcneKKbIe npuMepn ABM unsrocTpanuu 

MeTOAa pacUeTa. 


